76 research outputs found

    A Dynamic Localized Adjustable Force Field Method for Real-time Assistive Non-holonomic Mobile Robotics

    Get PDF
    Providing an assistive navigation system that augments rather than usurps user control of a powered wheelchair represents a significant technical challenge. This paper evaluates an assistive collision avoidance method for a powered wheelchair that allows the user to navigate safely whilst maintaining their overall governance of the platform motion. The paper shows that by shaping, switching and adjusting localized potential fields we are able to negotiate different obstacles by generating a more intuitively natural trajectory, one that does not deviate significantly from the operator in the loop desired-trajectory. It can also be seen that this method does not suffer from the local minima problem, or narrow corridor and proximity oscillation, which are common problems that occur when using potential fields. Furthermore this localized method enables the robotic platform to pass very close to obstacles, such as when negotiating a narrow passage or doorway

    Assistive trajectories for human-in-the-loop mobile robotic platforms

    Get PDF
    Autonomous and semi-autonomous smoothly interruptible trajectories are developed which are highly suitable for application in tele-operated mobile robots, operator on-board military mobile ground platforms, and other mobility assistance platforms. These trajectories will allow a navigational system to provide assistance to the operator in the loop, for purpose built robots or remotely operated platforms. This will allow the platform to function well beyond the line-of-sight of the operator, enabling remote operation inside a building, surveillance, or advanced observations whilst keeping the operator in a safe location. In addition, on-board operators can be assisted to navigate without collision when distracted, or under-fire, or when physically disabled by injury

    A non-holonomic, highly human-in-the-loop compatible, assistive mobile robotic platform guidance navigation and control strategy

    Get PDF
    The provision of assistive mobile robotics for empowering and providing independence to the infirm, disabled and elderly in society has been the subject of much research. The issue of providing navigation and control assistance to users, enabling them to drive their powered wheelchairs effectively, can be complex and wide-ranging; some users fatigue quickly and can find that they are unable to operate the controls safely, others may have brain injury re-sulting in periodic hand tremors, quadriplegics may use a straw-like switch in their mouth to provide a digital control signal. Advances in autonomous robotics have led to the development of smart wheelchair systems which have attempted to address these issues; however the autonomous approach has, ac-cording to research, not been successful; users reporting that they want to be active drivers and not passengers. Recent methodologies have been to use collaborative or shared control which aims to predict or anticipate the need for the system to take over control when some pre-decided threshold has been met, yet these approaches still take away control from the us-er. This removal of human supervision and control by an autonomous system makes the re-sponsibility for accidents seriously problematic. This thesis introduces a new human-in-the-loop control structure with real-time assistive lev-els. One of these levels offers improved dynamic modelling and three of these levels offer unique and novel real-time solutions for: collision avoidance, localisation and waypoint iden-tification, and assistive trajectory generation. This architecture and these assistive functions always allow the user to remain fully in control of any motion of the powered wheelchair, shown in a series of experiments

    E-learning for Critical Thinking: Using Nominal Focus Group Method to Inform Software Content and Design

    Get PDF
    Background: Undergraduate nursing students are often confused by multiple understandings of critical thinking. In response to this situation, the Critiique for critical thinking (CCT) project was implemented to provide consistent structured guidance about critical thinking. Objectives: This paper introduces Critiique software, describes initial validation of the content of this critical thinking tool and explores wider applications of the Critiique software. Materials and Methods: Critiique is flexible, authorable software that guides students step-by-step through critical appraisal of research papers. The spelling of Critiique was deliberate, so as to acquire a unique web domain name and associated logo. The CCT project involved implementation of a modified nominal focus group process with academic staff working together to establish common understandings of critical thinking. Previous work established a consensus about critical thinking in nursing and provided a starting point for the focus groups. The study was conducted at an Australian university campus with the focus group guided by open ended questions. Results: Focus group data established categories of content that academic staff identified as important for teaching critical thinking. This emerging focus group data was then used to inform modification of Critiique software so that students had access to consistent and structured guidance in relation to critical thinking and critical appraisal. Conclusions: The project succeeded in using focus group data from academics to inform software development while at the same time retaining the benefits of broader philosophical dimensions of critical thinking

    Powered Wheelchair Platform for Assistive Technology Development

    Get PDF
    Literature shows that numerous wheelchair platforms, of various complexities, have been developed and evaluated for Assistive Technology purposes. However there has been little consideration to providing researchers with an embedded system which is fully compatible, and communicates seamlessly with current manufacturer's wheelchair systems. We present our powered wheelchair platform which allows researchers to mount various inertial and environment sensors, and run guidance and navigation algorithms which can modify the human desired joystick trajectory, so as to assist users with negotiating obstacles, and moving from room to room. We are also able to directly access other currently manufactured human input devices and integrate new and novel input devices into the powered wheelchair platform for clinical and research assessment

    Highly efficient Localisation utilising Weightless neural systems

    Get PDF
    Efficient localisation is a highly desirable property for an autonomous navigation system. Weightless neural networks offer a real-time approach to robotics applications by reducing hardware and software requirements for pattern recognition techniques. Such networks offer the potential for objects, structures, routes and locations to be easily identified and maps constructed from fused limited sensor data as information becomes available. We show that in the absence of concise and complex information, localisation can be obtained using simple algorithms from data with inherent uncertainties using a combination of Genetic Algorithm techniques applied to a Weightless Neural Architecture

    Developing Effective Intelligent Assistance for the Powered Wheelchair User

    Get PDF
    This research is working towards developing a pre-production prototype system which can provide a low-cost real-time adjustable and adaptable driving assistance system for powered wheelchair users. Currently we are seeking to obtain information from user joystick input and their driving quality to identify symptoms and make adjustments to the driving assistance system

    Attitude Control of Small Probes for De-orbit, Descent and Surface Impact on Airless Bodies Using a Single PWM Thruster

    Get PDF
    A single thruster attitude and de-orbital control method is proposed, capable of delivering a small spin stabilized probe with payload to the surface of an airless body such as the Moon. Nutation removal, attitude control and fast large angle maneuvers have been demonstrated and shown to be effective using a commercially available single standard cold gas pulse width modulated controlled thruster model. Maximum final impact angle due to drift and residual velocities was found to be less than 5 degrees and the maximum angle of attack to be 4 deg. The conventional 3-axis control would require as many as twelve thrusters requiring a more substantial structure with complex pipework, and a more sophisticated controller. The single thruster concept minimises the mass requirement and thus cost of the mission, making the concept of small networked surface probes for extended science missions more viable. Experiments based on computer simulation have shown that strict design and mission profile requirements can be fulfilled using the single thruster control method

    Evaluation of 3D obstacle avoidance algorithm for smart powered wheelchairs

    Get PDF
    This research investigates the feasibility for the development of a novel 3D collision avoidance system for smart powered wheelchairs operating in a cluttered setting by using a scenario generated in a simulated environment using the Robot Operating System development framework. We constructed an innovative interface with a commercially available powered wheelchair system in order to extract joystick data to provide the input for interacting with the simulation. By integrating with a standard PWC control system the user can operate the PWC joystick with the model responding in real-time. The wheelchair model was equipped with a Kinect depth sensor segmented into three layers, two representing the upper body and torso, and a third layer fused with a LIDAR for the leg section. When using the assisted driving algorithm there was a 91.7% reduction in collisions and the course completion rate was 100% compared to 87.5% when not using the algorithm

    Embedded hardware for closing the gap between research and industry in the assistive powered wheelchair market

    Get PDF
    Literature is abound with smart wheelchair platforms of various developments, yet to date there has been little technology find its way to the market place. Many trials and much research has taken place over the last few decades however the end user has benefited precious little. There exists two fundamental difficulties when developing a smart powered wheelchair assistive system, the first is need for the system to be fully compatible with all of the manufacturers, and the second is to produce a technology and business model which is marketable and therefore desirable to the manufacturers. However this requires the researchers to have access to hardware which can be used to develop practical systems which integrate and communicate seamlessly with current manufacturer’s wheelchair systems. We present our powered wheelchair system which integrates with 95% of the powered wheelchair controller market; our system allows researchers to access the low level embedded system with more powerful computational devices running sophisticated software enabling rapid development of algorithms and techniques. When they have been evaluated they can be easily ported to the embedded processor for real-time evaluation and clinical trial
    corecore